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Abstract. The structure of the weak axial pion exchange current is discussed in various models. It is shown
how the interplay of the chiral invariance and the double-counting problem restricts uniquely the form of
the pion potential term, to the case when the nuclear dynamics is described by the Schrödinger equation
with static nucleon-nucleon potential.

PACS. 11.40.Ha Partially conserved axial-vector currents – 25.30.-c Lepton-induced reactions

1 Introduction

The semileptonic weak nuclear interaction has been stud-
ied for half a century. The basic cornerstones of this field of
research are i) the chiral symmetry, ii) the conserved vec-
tor current and iii) the partial conservation of the axial
current (PCAC). In the formulation [1], the PCAC reads

qµ 〈Ψf |j
a
5µ(q)|Ψi〉 = ifπm

2
π∆

π
F (q

2) 〈Ψf |m
a
π(q)|Ψi〉 , (1)

where ja5µ(q) is the total weak axial isovector cur-
rent, ma

π(q) is the total pion source (the pion produc-
tion/absorption amplitude) and |Ψi,f 〉 is the wave function
describing the initial (i) or final (f) nuclear state.

It has been recognized [2] in studying the triton beta
decay,

3H → 3He + e− + ν̄ , (2)

that in addition to the one-nucleon current, the effect
of the space component of weak axial exchange current
(WAEC) enhances the Gamow-Teller matrix element that
is to be compared to the one extracted from the data.
This suggests that the current ja5µ(q) can be understood
for the system of A nucleons as the sum of the one- and
two-nucleon components,

ja5µ(q) =
A
∑

i=1

ja5µ(1, i, qi) +
A
∑

i<j

ja5µ(2, ij, q) . (3)
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Let us describe the nuclear system by the Schrödinger
equation

H|Ψ〉 = E|Ψ〉 , (4)

with the Hamiltonian H,

H = T + V , (5)

where T is the kinetic energy and V is the nuclear po-
tential describing the interaction between nucleon pairs.
Taking for simplicity A = 2, we obtain from eq. (1) in the
operator form and from eqs. (3) and (5) the following set
of equations for the one- and two-nucleon components of
the total axial current

~qi ·~j
a
5(1, ~qi) = [Ti , ρ

a
5(1, ~qi) ] + ifπm

2
π∆

π
F (q

2)ma
π(1, ~qi) ,

i = 1, 2 , (6)

~q ·~ja5(2, ~q ) = [T1 + T2 , ρa5(2, ~q ) ] + ([V , ρa5(1, ~q ) ]

+(1 ↔ 2)) + ifπm
2
π∆

π
F (q

2)ma
π(2, ~q ) . (7)

In eq. (7), we neglected ρa5(2, ~q ) in the second commu-
tator on the right-hand side. If the WAEC is constructed
so that it satisfies eq. (7), then the matrix element of
the total current, sandwiched between solutions of the
Schrödinger equation (4), satisfies the PCAC (1).

It is known from the dimensional analysis [3], that the

space component of the WAEC ~ja5(2, ~q ) is of the order
O(1/M3) (M is the nucleon mass). Being of a relativis-
tic origin, it is model dependent. This component of the
WAEC was derived by several authors in various mod-
els. In the standard nuclear physics approach the model
systems of strongly interacting particles contain various
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particles, such as baryons N , ∆(1232), pions and heavy
mesons [4–10]. On the other hand, in effective field the-
ories, one uses Lagrangians with the heavy particle de-
grees of freedom integrated out and preserving nucleon,
delta and pion [11] or nucleon and pion [12,13] or only
nucleon [14,15] degrees of freedom.

Accepting the chiral symmetry as the basic symmetry
governing the nuclear dynamics, it is expected that the
WAEC of the pion range, constructed within approaches
respecting this symmetry and in conjunction with the
given nuclear equation of motion, should exhibit model
independence. On the other hand, checking the weak ax-
ial pion exchange currents, constructed in [5–10,13,15],
one concludes that the situation is not transparent. Let
us discuss various approaches in more detail.

Let us first classify, in general, the WAEC of a given
range into potential and non-potential currents. In anal-
ogy with the electromagnetic sector, the potential WAEC
is such that it satisfies the part of eq. (7) containing the
commutator [V , ρa5(1, ~q ) ]. As in the case of the electro-
magnetic interaction, the pair term is one of the exchange
currents that belong to the potential current. It is ob-
tained by the non-relativistic reduction of the negative
frequency part of the nucleon Born term. Besides, other
potential currents can appear. Then the total potential
WAEC is defined as the sum of all potential terms of a
given range.

The approach of ref. [9] in constructing the WAEC is
the only one that is not based on chiral Lagrangians. It
uses the relativistic nucleon Born terms and the WAEC
is obtained by embedding the nuclear potential into the
negative-frequency part of these terms, thus directly con-
necting the potentials and the WAEC. It follows that this
current is not chiral since it is not based on any chiral
group. The pion pair term is obtained using the pseudovec-
tor (PV) πNN coupling1, which could be considered as
an argument that the global chiral invariance is respected.
However, any model is chiral invariant only if the resulting
current does not depend on the choice of the πNN cou-
pling, which is not the case of ref. [9]. As discussed in the
last paragraph of sect. 2 of ref. [9], this construction does
not tolerate the pseudoscalar (PS) πNN coupling, since
it provides the weak pion production amplitude that is
at variance with the current algebra prediction. However,
it was overlooked in [9] that the chiral model [4] with the
PS πNN coupling does provide the correct weak pion pro-
duction amplitude. In other words, one should use chiral
models and not simple πNN couplings.

In ref. [6], the WAEC is derived within the extended
S-matrix method [16], using the chiral Lagrangian model
with the PV πNN coupling [4] . The resulting potential
current is of the order O(1/M 3) and is given by the dif-
ference of the nucleon Born term and the first Born iter-
ation. In ref. [7], the same potential current is obtained
from the chiral model [4] with the PS πNN coupling. In
this case, besides the pair term, the PCAC constraint term
contributes.

1 Being of the order O(1/M5), it is negligible.

The pion pair term of refs. [8,17] is derived from the
PS πNN coupling that is not chiral invariant, as it was
correctly noted in ref. [18].

In ref. [13], the WAEC is derived within the heavy
baryon chiral perturbation theory (HBChPT) approach,
but the pion pair term is considered as fully reducible and
therefore omitted.

Moreover, it is not clear from refs. [8,9,13] that the
constructed WAEC of the pion range satisfies a particular
form of the PCAC in conjunction with a specific nuclear
equation of motion2. In other words, the problem of double
counting is overlooked. As it will become clear later, these
currents do not satisfy the PCAC as stated in eq. (1), if
used in standard nuclear physics calculations, based on
the Schrödinger equation and static nuclear potentials.

Here we shall discuss the role of the weak axial pion
pair term in fulfilling eq. (7) in conjunction with the
Schrödinger equation and the static nuclear potential. Si-
multaneously, we shall consider the problem of double
counting. We shall construct the pion pair term and the
related potential current in two models. In sect. 2.1, we
start from the Lagrangian of the πN system used in the
chiral perturbation theory, from which we construct in
the leading order (tree approximation) the WAEC of the
pion range. We explicitly show how the potential and
non-potential parts interplay with other components en-
tering eq. (7) so that the continuity equation is satisfied.
The resulting potential term is the same as the one de-
rived earlier in [4–7] from the hard pion Lagrangian of
the N∆πρa1 system. In sect. 2.2, we derive the potential
term in the leading order of the HBChPT approach. We
show that the obtained current is the same as the one
derived in sect. 2.1. We compare the space component
of the long-range part of the WAEC computed in vari-
ous models in sect. 2.3, where we also calculate the effect
of the potential term in the deuteron weak disintegration
by low-energy neutrinos in the neutral-current channel. In
sect. 3, we summarize our results.

2 The pion pair term and the nuclear PCAC

In constructing the weak axial potential pion exchange op-
erator we start from the set of relativistic Feynman am-
plitudes satisfying the PCAC equation. Generally, these
amplitudes are not yet the nuclear exchange currents, be-
cause of the double-counting problem: the presence of the
pair term in the exchange current operator is related to
the equation, describing the nuclear states. If the nucleon
propagator in the first Born iteration is the full relativis-
tic one, then this iteration is equal to the nucleon Born
term and the exchange currents do not contain any pair
term, in order to avoid the double counting. This is the
case of the axial currents constructed in conjunction with
the Bethe-Salpeter equation [19]. In this case, the nucleon
Born term is fully reducible. In the case of the Schrödinger

2 According to ref. [17], the axial current is not supposed to
satisfy any continuity equation, in contrast to the electromag-
netic current.
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equation, the nucleon Born term is not fully reducible.
The propagator of the first Born iteration contains only
the positive frequencies and usually, the nuclear potential
is the static one. Then the negative-frequency part is not
the only one to contribute to the exchange current oper-
ator from the nucleon Born term. If the Feynman ampli-
tudes are constructed using the chiral model with the PV
coupling, the positive-frequency part of the nucleon Born
term does not coincide with the first Born iteration and
the difference should be calculated. Then the resulting po-
tential current is equal to this difference, since the negative
frequency part of the nucleon Born term (the pair term) is
suppressed by a factor ≈ 1/M 2 and therefore, negligible.

Let us note that the method of the construction of
the nuclear WAEC [5–7] we use here was considered ear-
lier [16] also for the construction of the electromagnetic ex-
change currents. The resulting exchange currents, jµ(2, q),
containing the leading relativistic corrections in both the
space and time components, satisfy the current conserva-
tion constraint

qµjµ(2) = ([V , ρ(1, ~q ) ] + (1 ↔ 2)) . (8)

These currents coincide with the exchange currents de-
rived within the framework of the transformation method
as it was shown in ref. [20].

Below we shall use two model Lagrangians of the
πN system that also include the external electroweak
fields aiming to demonstrate the appearance of the po-
tential term of the same order in 1/M as other axial
pion-exchange currents, and to show that its presence is
required by the PCAC hypothesis. The first model La-
grangian is the basic Lagrangian of the chiral perturba-
tion theory [21]. The second model Lagrangian is that of
the HBChPT used in [12] to construct the WAEC. We
construct the currents in the leading order only, since the
higher-order corrections cannot change our conclusions.

2.1 The weak axial pion pair term within the
formalism of the chiral perturbation theory

We start from the Lagrangian of the πN system [21–23]

LπN = −N̄ γµ (∂µ − iᾱµ ‖)N

−M N̄N + igAN̄ γµγ5 ᾱµ⊥N , (9)

ᾱµ = −i[∂µξ(π)]ξ
+ − eξ (Vµ +Aµ) ξ

+

≡ ᾱµ ‖ + ᾱµ⊥ . (10)

Here Vµ and Aµ are the external vector and axial vector
fields, and

ᾱµ ‖ = (2trSaᾱµ)S
a , ᾱµ⊥ = (2trXaᾱµ)X

a ,

ξ(π) = exp(−iπ(x)/fπ) ,

π(x) =
∑

a

πa(x)Xa , (11)

Xa =
τa

2
γ5 , Sa =

τa

2
. (12)

6
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Fig. 1. The weak axial nucleon Born term of the pion range.

The current of our interest is presented in fig. 1. In
order to derive the contribution of this current to the space
component of the WAEC, we need to extract from the
Lagrangian (9) the lowest-order vertices

∆LπN = −igA N̄ γµγ5
~τ

2
N · ~Aµ − i

gA
2fπ

N̄ γµγ5 ~τ N ·∂µ~π .

(13)

The Feynman amplitude reads

Ja
5µ(pv) = −ū(p′1)

[

Ôπ
1 (−q2)SF (P ) Ĵ 5µ(1, q)

1

2
(a+−a−)

+Ĵ 5µ(1, q)SF (Q)Ôπ
1 (−q2)

1

2
(a+ + a−)

]

×u(p1)∆
π
F (q

2
2)ū(p

′
2)Ô

π
2 (q2)u(p2) + (1 ↔ 2) ,

(14)

where

Ôπ(q2) =
fπNN

mπ

6 q2γ5 , a± =
1

2
[τa1 , τ

n
1 ]± τn2 , (15)

and we consider only the contact part of the one-nucleon
current

Ĵ 5µ(1, c) = −igA γµγ5 . (16)

In calculating the contribution of the amplitude
Ja

5µ(pv) to the exchange currents, one splits the nucleon
propagator into the positive- and negative-frequency parts
and the non-relativistic reduction is made. As already dis-
cussed in sect. 1, the contribution to the space component
of the negative-frequency part of the Feynman amplitude
is of the nominal order O(1/M 5) and therefore, negligi-
bly small. In the extended S-matrix method3 [16,24], first
the positive-frequency part of the amplitude Ja

5µ(pv) is

3 The same procedure has recently been applied in the study
of the e-d scattering in ref. [25].
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written as

J
a(+)
5µ (pv) =

fπNN

mπ

ū(p′1)

[

(~q2 · ~γ + iq20γ4) γ5
1

P0 − E(~P )

×u(P )ū(P ) Ĵ 5µ(1, q)
1

2
(a+ − a−)

+Ĵ 5µ(1, q)
1

Q0 − E( ~Q )
u(Q)ū(Q)

× (~q2 · ~γ + iq20γ4) γ5
1

2
(a+ + a−)

]

u(p1)

×∆π
F (q2)ū(p

′
2)Ô

π
2 (q2)u(p2) + (1 ↔ 2) ,

(17)

For the graph fig. 1a there holds

q20 = P0 − p′10 = P0 − E(~P ) + E(~P )− p′10

≡ P0 − E(~P ) + qst20 . (18)

A similar equation holds for the graph fig. 1b. Then one
obtains

J
a(+)
5µ (pv) = J

a(+)
5µ (ps) + ∆Ja

5µ(pv) . (19)

Here J
a(+)
5µ (ps) is the positive frequency part of the nu-

cleon Born term obtained using the static PS πNN cou-
pling. It is the current containing a contribution from the
potential, since it coincides with the first Born iteration of
the Lippmann-Schwinger equation, if the static one-pion
exchange potential is used. In order to avoid double count-
ing, the contribution from such a graph is not included in
the exchange current since it is reducible.

The current ∆Ja
5µ(pv) arises from the contact interac-

tion

∆Ja
5µ(pv) = i

fπNN

mπ

ū(p′1)
[

γ4γ5 u(P )ū(P ) Ĵ 5µ(1, q)

×
1

2
(a+ − a−)− Ĵ 5µ(1, q)u(Q)ū(Q)γ4γ5

1

2
(a+ + a−)

]

×u(p1)∆
π
F (q2)ū(p

′
2)Ô

π
2 (ps)u(p2) + (1 ↔ 2) , (20)

where Ôπ
2 (ps) = igπNNγ5. The non-relativistic reduction

of the space component of the current (20) yields

∆~ja5(pv) = gA
g2
πNN

(2M)3

[

(

~q + i~σ1 × ~P1

)

τ a
2

+
(

i ~P1 − ~σ1 × ~q
)

(~τ1 × ~τ2)
a

]

×∆π
F (~q

2
2 )(~σ2 · ~q2) + (1 ↔ 2) , (21)

where ~P1 = ~p1+~p ′1 . This current coincides with the poten-
tial term derived earlier [6] from the hard-pion Lagrangian
with the PV πNN coupling [4,5] and it contributes to the
space component of the WAEC in the same leading order
in 1/M as other pion exchange currents.

The well-known Foldy-Dyson unitary transformation
of the nucleon field [26,27] can be used in the Lagrangian

(9) to obtain the PS πNN coupling

N = exp

[

−i
gA
2fπ

γ5 (~τ · ~π)

]

N ′ . (22)

In this case, together with the nucleon Born term Ja
5µ(ps)

a contact amplitude Ja
5µ(PCAC), called the PCAC con-

straint term, appears. For these amplitudes, the following
equation holds:

Ja
5µ(pv) = Ja

5µ(ps) + Ja
5µ(PCAC) . (23)

It is clear that the resulting amplitude does not depend on
the nature of the πNN coupling. This is due to the validity
of the powerful representation independence (equivalence)
theorem [28–30].

In order to extract the nuclear WAEC from the rela-
tivistic amplitudes in this case, the reducible part of the
nucleon Born amplitude Ja

5µ(ps) is isolated. This is the

positive-frequency part J
a (+)
5µ (ps). Then from eqs. (19)

and (23) we get

∆Ja
5µ(pv) = J

a (−)
5µ (ps) + Ja

5µ(PCAC) , (24)

where J
a (−)
5µ (ps) is the negative-frequency part of the nu-

cleon Born term obtained with the PS πNN coupling.
Explicitly, one has for the space component of the nuclear
current, given by the right-hand side of eq. (24)

~ja5(ps) = gA
g2
πNN

(2M)3

×

[

(

~q + i~σ1 × ~P1

)

τ a
2 − (~σ1 × ~q2) (~τ1 × ~τ2)

a

]

×∆π
F (~q

2
2 )(~σ2 · ~q2) + (1 ↔ 2) , (25)

and

~ja5(PCAC) = gA
g2
πNN

(2M)3

[

i ~P1 − (~σ1 × ~q1)
]

(~τ1 × ~τ2)
a

×∆π
F (~q

2
2 )(~σ2 · ~q2) + (1 ↔ 2) . (26)

So in the chiral model with the PS πNN coupling,
the potential current is obtained as the sum of the
negative-frequency part of the nucleon Born term and the
PCAC constraint term. This leads to the equality given
by eq. (21).

The derivation of the WAEC from the hard pion La-
grangian with the PS πNN coupling was carried out ear-
lier [5,7] with the following consequences:
i) In a chiral invariant model with the PS πNN coupling,
additional potential term arises, that makes the result-
ing current equivalent to the current of the chiral model
with the PV πNN coupling. It follows the necessity of
constructing the WAEC within the chiral models and not
simply in terms of πNN couplings.
ii) In order to avoid double counting, the reducible part of
the potential current should be removed, since it is taken
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into account already at the level of the impulse approx-
imation calculations. This procedure depends on the nu-
clear equation of motion used for the description of nu-
clear states. Here the calculation is carried out for the
Schrödinger equation and static one-pion exchange po-
tentials. In our opinion, the problem of double counting
was omitted in [8,9,12]. Since the potential term is absent
in [12], those currents should be used in conjunction with
the Bethe-Salpeter equation, because, as discussed in [19,
31], the WAEC does not contain the contribution from the
nucleon Born term in this case. On the other hand, these
currents [12] are used at present in nuclear physics calcu-
lations with wave functions derived with the Schrödinger
equation [18,32,33].

Let us now discuss the continuity equation (1) for our
current. It can be shown that the nucleon Born term due
to the contact part of the one-body current (16) of our
model satisfies the continuity equation

qµJ
a
5µ,π(B, c) = ifπ Ma

π (B) , (27)

where Ma
π (B) is the pion Born absorption amplitude given

by the graph of fig. 1 with the pion line instead of the
weak-interaction wavy line inserted. Then the related nu-
clear continuity equation for the nuclear current reads

qµj
a
5µ, π(B, c) = ifπm

a
π(2) + ([Vπ, ρ

a
5(1, c)] + (1 ↔ 2)) .

(28)
Here the space part of the current ja5µ, π(B, c) is given by
eq. (21) with the divergence

~q ·∆~ja5(pv) =
g3
A

8Mf2
π

{

[

~q 2 + i(~q · ~σ1 × ~P1)
]

τ a
2

+ i(~q · ~P1) (~τ1 × ~τ2)
a

}

∆π
F (~q

2
2 )(~σ2 · ~q2) + (1 ↔ 2) ,

(29)

while it holds for the time component that

q0∆ja50(pv) ≈ O(1/M5) . (30)

The pion absorption amplitude is obtained by the same
method used above for the derivation of the current
∆~j 5(pv). Besides the contribution ma

π(2, ver) from the en-
ergy dependence of the πNN vertex of the internal pion,
the contribution ma

π(2, ext) from the energy dependence of
the πNN vertex of the external pion arises with the result

ifπm
a
π(2, ver) = ~q ·∆~ja5(pv) , (31)

ifπm
a
π(2, ext) =

g3
A

8Mf2
π

{

[

~q 2
2 − i(~q2 · ~σ1 × ~P1)

]

τ a
2

+ i(~q2 · ~P1) (~τ1 × ~τ2)
a

}

∆π
F (~q

2
2 )(~σ2 · ~q2)

+(1 ↔ 2) . (32)

It is straightforward to obtain that the commutator of the
static one-pion exchange potential and the one-nucleon
axial charge density

ρa5(1, c)i =
gA
2M

(~σi · ~Pi)
τa

2
, (33)

is given by

([Vπ, ρ
a
5(1, c)] + (1 ↔ 2)) = −ifπm

a
π(2, ext) . (34)

The continuity equation (28) which is in the leading order
in 1/M of the form

~q ·∆~ja5(pv) = ifπ [m
a
π(2, ver) + ma

π(2, ext)]

+ ([Vπ, ρ
a
5(1, c)] + (1 ↔ 2)) , (35)

is satisfied exactly. This is established from eqs. (29)-(34).
The contact term ∆ja5µ(pv) is related to the part of the
continuity equation, containing the potential and can be
called as the true potential current.

Besides the nucleon Born term, our model Lagrangian
contains a AπNN vertex

∆LAπNN = −
i

2fπ
N̄ γµ ~τ N ·

(

~π × ~Aµ

)

, (36)

providing another contact current that is a part of the full
contact term

ja5µ(c) =
i

2fπ
εamn ū(p′1)

(

γµ −
κV

2M
σµνqν

)

τm u(p1)

×∆π
F (q

2) ū(p′2)Ô
π
2 (q2)τ

nu(p2) + (1 ↔ 2). (37)

This current is required by the current algebra prediction
for the weak pion production and it corresponds to the
well known ρ-π current. It looks like a potential one, but
it is not connected to the potential and it satisfies the
PCAC equation

qµj
a
5µ(c) =

i

2fπ
εamn ū(p′1) 6 q2τ

m u(p1)∆
π
F (q

2) ū(p′2)

×Ôπ
2 (q2)τ

nu(p2) + (1 ↔ 2) ≡ ifπ ma
π(c) . (38)

The amplitude ma
π(c) is generated from the NNππ term

∆LNNππ = (i/4f2
π)N̄γµ~τN · (∂µ~π × ~π).

Let us note that the contact term ja5µ(c), eq. (37), is
present in the HBChPT currents [13] also.

In the next section, we show that the same poten-
tial current (21) can be derived also within the HBChPT
scheme.

2.2 The weak axial pion pair term within the HBChPT
formalism

We first derive the positive-frequency nucleon Born term
for the weak pion production amplitude on the nucleon in
the leading order. To this end, we start from the lowest-
order HBChPT Lagrangian [11,12,21]

L
(1)
πN = −N̄v [ iv ·D + gA Sv · u ]Nv , (39)

where Nv is the velocity dependent light component of
the nucleon field Ψ , introduced in the HBChPT and it is
defined as

Nv ≡ e−iMv·xPv+ Ψ . (40)
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Here the four-velocity vµ has the properties v2 = −1 and
v0 ≥ 1 and the projection operator Pv+ is defined as

Pv+ =
1− i 6 v

2
. (41)

For a choice vµ = pµ/M we have

Pv+ =
M − i 6 p

2M
. (42)

Taking into account only the weak axial external interac-
tion, aµ = Aa

µ τa/2, we obtain in the leading order

gASv · u ≈ gAτaSv · A
a
µ −

gA
fπ

Sv,µ(~τ · ∂µ~π) . (43)

Then the amplitude, corresponding to fig. 1a reads

Mv
c = −i

2g2
A

fπ
N ′Nτ b

τa

2
ū′v (Sv · q2)

Pv+

v ·K
(Sv · A

a) uv .

(44)
Here N ′ and N are the normalization factors. We use in
Mv

c the choice

vµ = pµ/M , ~p = ~P , p0 = E(~P ) . (45)

With this choice, the decomposition of the four-vector Pµ

is
Pµ = pµ + Kµ , (46)

so that the scalar product v ·K in eq. (44) is given by

v ·K = −v0 (P0 −E(~P )) . (47)

Then we can write

ū′v (Sv · q2) = −
1

2
ū′v γ5(i 6 q2 + q2 · v) =

ū′v

[

Sv · q
st
2 −

1

2
γ5 (P0 − E(~P ))(γ4 + v0)

]

. (48)

Employing eqs. (47) and (48) in eq. (44), we obtain

Mv
c = −i

2g2
A

fπ
N ′Nτ b

τa

2
ū′v
(

Sv · q
st
2

) Pv+

v ·K
(Sv · A

a) uv

−i
2g2

A

fπ
N ′Nτ b

τa

2

1

2v0
ū′v γ5γ4 Pv+ (Sv · A

a) uv . (49)

For the amplitude, corresponding to fig. 1b, we have

Mv
d = −i

2g2
A

fπ
N ′N

τa

2
τ b ū′v (Sv · A

a)
Pv+

v ·K

(

Sv · q
st
2

)

uv

+i
2g2

A

fπ
N ′N

τa

2
τ b

1

2v0
ū′v (Sv · A

a)Pv+γ5γ4 uv . (50)

In Mv
d , we use the choice

vµ = pµ/M , ~p = ~Q , p0 = E( ~Q ) . (51)

With this choice, the decomposition of the four-vector Qµ

is
Qµ = pµ + Kµ , (52)

from which it follows that

v ·K = −v0 (Q0 − E( ~Q )) . (53)

Summing up the partial results (49) and (50), we obtain

Mv
c+d = Mv

c+d(st) + ∆Mv
c+d , (54)

where

Mv
c+d(st) = −i

2g2
A

fπ
N ′Nū′v

[

(

Sv · q
st
2

) Pv+(P )

v ·K
(Sv · A

a)

× τ b
τa

2
+ (Sv · A

a)
Pv+(Q)

v ·K

(

Sv · q
st
2

) τa

2
τ b

]

uv ,

(55)

and

∆Mv
c+d = i

g2
A

fπ

1

v0
N ′Nū′v

[

γ4γ5 Pv+(P ) (Sv · A
a)

× τ b
τa

2
− (Sv · A

a) Pv+(Q) γ4γ5
τa

2
τ b

]

uv . (56)

In order to obtain the two-nucleon amplitude, one should
attach the propagator of the intermediate meson and the
πNN vertex of the second nucleon. According to the
generalized Weinberg’s counting rules [12], such an am-
plitude has ν = −1, like the contact amplitude ja5µ(c),
eq. (37). The amplitude, following from M v

c+d(st) is ana-
logue to the positive-frequency part of the nucleon Born

term J
a(+)
5µ (ps), obtained with the PS πNN coupling. In

our opinion, only this part belongs to the class of re-
ducible diagrams that are not included in the exchange
currents, if the currents are used in conjunction with the
Schrödinger equation and the static one-pion exchange po-
tential. On the other hand, one can obtain from the inter-
action ∆Mv

c+d a contact amplitude ∆Ja
c+d,µ

∆Ja
c+d, µ = −

g3
A

f2
π

1

v10
N ′
v1
Nv1

ū′v1

[

γ4γ5 Pv1+(P )Sv1,µ

×
1

2
(a+ − a−)− Sv1,µPv1+(Q) γ4γ5

1

2
(a+ + a−)

]

×uv1
∆π

F (q
2
2)N

′
v2
Nv2

ū′v2
(Sv2

· q2) uv2
, (57)

that is of the same form as ∆Ja
5µ(pv) of eq. (20). Mak-

ing the non-relativistic reduction, one obtains the con-
tact term that is identical with the current ∆ja5µ(pv) of
eq. (21).

2.3 Comparison of the WAEC

Let us now compare the space component of the WAEC
of the pion range derived in the standard nuclear physics
approach [4,7,34], based on the chiral Lagrangians, with a
similar component in the HBChPT approach [12,18] taken
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Table 1. Cumulative contributions to the cross-section σνd (×10−42 cm2) from the weak axial exchange currents for various
neutrino energies are displayed. The cross-section, calculated from the sum of the impulse approximation current and of the ∆
isobar excitation of the π and ρ ranges is presented in the row labelled as IA+∆(π+ ρ). Other contributions correspond to the
ρ-π current and to the pion potential term. The cross-section in the n-th row is given by the contribution of all previous currents,
the n-th current including. The number in the bracket is the ratio of the n-th cross-section to the cross-section in the row above.

Eν [MeV] 5 10 15 20 101

IA+∆(π + ρ) 0.0977 (-) 1.126 (-) 3.405 (-) 6.935 (-) 158.5 (-)

+ρ-π 0.0986 (1.009) 1.137 (1.010) 3.443 (1.011) 7.016 (1.012) 161.1 (1.016)

+p(π) 0.0978 (0.992) 1.127 (0.991) 3.408 (0.990) 6.940 (0.989) 157.9 (0.980)

in the leading order. The sum of the currents of the stan-
dard approach is given by the contribution of the potential
term as derived in sect. 2, of the ∆(1232) isobar excitation
and of the ρ-π current,

~ja5, π =
gA

2Mf2
π

〈

g2
A

{(fπN∆

fπNN

)2 2M

9(M∆ −M)
~q2

+
1

4
[~q + i(~σ1 × ~P1)]

}

τ a
2 +

1

4

{

[

g2
A

(fπN∆

fπNN

)2

×
2M

9(M∆ −M)
+ (1 + κVρ )

]

i(~σ1 × ~q2)

+[g2
A − (1 + κVρ )] i(~σ1 × ~q) + (g2

A − 1)~P1

}

× i (~τ1 × ~τ2)
a

〉

(~σ2 · ~q2)∆
π
F (~q

2
2 ) + (1 ↔ 2). (58)

The contribution from the ∆ isobar excitation is specified
by the factor ( fπN∆

fπNN
)2/(M∆−M), where M∆ is the mass of

the ∆ isobar and fπN∆ is the πN∆ coupling. Other terms,
containing g2

A, are from the potential current. In deriving
eq. (58), we put the strong form factors FBNN (~q 2

i ) = 1,
∆ρ

F (~q
2

1 ) = 1/m2
ρ and we used the Goldberger-Treiman

and KSFR relations, M |gA| = gfπ and 2f2
πg

2
ρ = m2

ρ, re-
spectively.

The leading order HBChPT currents were com-
pared [18] with the standard currents [8] that contain the
pion pair term with the PS πNN coupling. In compar-
ing, this current was omitted. The argument was that it
corresponds to the PS πNN coupling that is not chiral.

Here we take for comparison the currents ~A a : ν3
12 (1π),

[[18], (A5)], but with the potential current (21) added. In
our notation

~A a : ν3
12 (1π) =

gA
2Mf2

π

〈

{2ĉ3 ~q2 +
g2
A

4
[~q + i(~σ1 × ~P1)]} τ

a
2

+
1

4
{(4ĉ4 + 1) i(~σ1 × ~q2) + [g2

A − 1 − c6] i(~σ1 × ~q )

+ (g2
A − 1)~P1 } i (~τ1 × ~τ2)

a
〉

× (~σ2 · ~q2)∆
π
F (~q

2
2 ) + (1 ↔ 2) . (59)

The currents ~ja5, π and ~A a : ν3
12 (1π) have an identical

structure. This was achieved by respecting the chiral in-
variance and solving the double-counting problem in con-
junction with the Schrödinger equation. In our opinion,

it is the current (59) that should be used in the nuclear
physics calculations with the nuclear wave functions de-
rived using the Schrödinger equation.

Let us also note here that the weak axial exchange
current [9] can be used in conjunction with the equation
of motion, the first Born iteration of which coincides with
the positive-frequency part of the nucleon Born term, con-
structed with the PV πNN coupling. In order to apply it
in conjunction with the Schrödinger equation, one should
remove the reducible piece from the positive-frequency
part of the nucleon Born term and add the rest to the
already derived exchange current [9]. The resulting cur-
rent will be of the order O(1/M 3). If the pion exchange
current [9] is constructed with the PS πNN coupling, ac-
cording to the discussion after eq. (26), one should sum
up the PCAC constraint term and the negative-frequency
Born term (the pair term), both with the potential em-
bedded. The resulting potential current will be the same
as in the PV πNN coupling case.

It follows also from the discussion after eq. (26) that
one needs to add the PCAC constraint term to the pair
term [8,17], in order to obtain the chiral potential current.

For the numerical estimate of the discussed effect,
we compute the contribution of the potential current to
the cross-section for the low-energy electron neutrino-
deuteron inelastic scattering in the neutral current chan-
nel,

νe + d → ν′e + p + n . (60)

This reaction is important for studying the solar neutrino
oscillations and it has been intensively studied both theo-
retically [15,33,35–38] and experimentally [39,40].

The model axial current considered contains the one-
nucleon current and the WAEC (58), to which we add
also the contribution from the ∆ isobar excitation of the
ρ range. Referring to sect. 4 of ref. [37] for the details,
we present the results in table 1. The nuclear wave func-
tions are generated by solving the Schrödinger equation
with the Nijmegen I potential [41] and the transition
3S1-

3D1 → 1S0 was considered . The used weak inter-
action constants are GF = 1.1803 × 10−5 GeV−2, and
gA = −1.267.
It is seen from table 1 that the effects of the ρ-π and po-
tential terms are ∼ 1% and they cancel each other to a
large extent. Since the total effect from the space part of
WAEC is at the level of a few percent, it is important to
correctly identify all the components of the WAEC that
satisfy the PCAC and contribute sensibly.
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3 Results and conclusions

The question of the interplay of the chiral invariance re-
striction and of the double-counting problem in the con-
struction of the weak axial potential exchange currents of
the pion range is discussed. It is shown that in order to
avoid the double-counting problem, one should study the
structure of the first Born iteration of the nuclear equa-
tion of motion and of the nucleon Born term. Only the
part of the nucleon Born term, that is not contained in
the first Born iteration contributes to the exchange cur-
rents. This current was constructed in conjunction with
the Schrödinger equation in sect. 2. Then it is shown that
the total potential exchange current, with the pion pair
term included, satisfies the PCAC constraint (7). The con-
struction is done in the leading order both in the chiral
perturbation theory and in the HBChPT approach. The
resulting potential term is the same in both approaches
and it coincides with the potential term derived earlier
from the hard pion Lagrangians. It is also shown that with
the correct potential term taken into account, the lead-
ing order part of the space component of the long-range
weak axial exchange currents of the HBChPT approach
is identical with such a component obtained within the
standard nuclear physics approach based on chiral La-
grangians. The same is also true for the pion exchange
currents constructed in refs. [8,9].

Numerically, the contribution of the potential term is
at the same level as the contribution from the well-known
ρ-π current and the two contributions tend to cancel each
other at low energies.

Let us note that in ref. [42], the time component of
the electromagnetic exchange currents of the pion range
was constructed in conjunction with the Blankenbecler-
Sugar-Logunov-Tavkhelidze equation [43,44], that is a
3-dimensional reduction of the Bethe-Salpeter equation4.
It was shown [20] that the resulting exchange charge den-
sity is equivalent to that obtained by such standard meth-
ods as are the transformation method [20] and the ex-
tended S-matrix method [16] and that it is independent
of the form of the πNN coupling. This result provides a
strong argument that the WAEC of the pion range con-
structed here, and more generally, the one-boson WAEC
constructed in ref. [37] from chiral Lagrangians, can be
used in standard nuclear physics calculations also in
conjunction with the corresponding Lippmann-Schwinger
equation, obtained [46] by the above-discussed reduction
of the Bethe-Salpeter equation, and using the Bonn po-
tentials [46–48] for generating the nuclear wave functions.

This work is supported in part by the grant GA CR
202/03/0210 and by Ministero dell’ Istruzione, dell’ Univer-
sità e della Ricerca of Italy (PRIN 2003). We thank J. Smejkal
for discussions and F.C. Khanna for the critical reading of the
manuscript.

4 See also ref. [45].
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